SIL1, a causative cochaperone gene of Marinesco-Sjögren syndrome, plays an essential role in establishing the architecture of the developing cerebral cortex

نویسندگان

  • Yutaka Inaguma
  • Nanako Hamada
  • Hidenori Tabata
  • Ikuko Iwamoto
  • Makoto Mizuno
  • Yoshiaki V Nishimura
  • Hidenori Ito
  • Rika Morishita
  • Motomasa Suzuki
  • Kinji Ohno
  • Toshiyuki Kumagai
  • Koh-ichi Nagata
چکیده

Marinesco-Sjögren syndrome (MSS) is a rare autosomal recessively inherited disorder with mental retardation (MR). Recently, mutations in the SIL1 gene, encoding a co-chaperone which regulates the chaperone HSPA5, were identified as a major cause of MSS. We here examined the pathophysiological significance of SIL1 mutations in abnormal corticogenesis of MSS. SIL1-silencing caused neuronal migration delay during corticogenesis ex vivo. While RNAi-resistant SIL1 rescued the defects, three MSS-causing SIL1 mutants tested did not. These mutants had lower affinities to HSPA5 in vitro, and SIL1-HSPA5 interaction as well as HSPA5 function was found to be crucial for neuronal migration ex vivo. Furthermore time-lapse imaging revealed morphological disorganization associated with abnormal migration of SIL1-deficient neurons. These results suggest that the mutations prevent SIL1 from interacting with and regulating HSPA5, leading to abnormal neuronal morphology and migration. Consistent with this, when SIL1 was silenced in cortical neurons in one hemisphere, axonal growth in the contralateral hemisphere was delayed. Taken together, abnormal neuronal migration and interhemispheric axon development may contribute to MR in MSS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C-terminal mutations destabilize SIL1/BAP and can cause Marinesco-Sjögren syndrome.

Marinesco-Sjögren syndrome (MSS) is an autosomal recessive, neurodegenerative, multisystem disorder characterized by severe phenotypes developing in infancy. Recently, mutations in the endoplasmic reticulum (ER)-associated co-chaperone SIL1/BAP were identified to be the major cause of MSS. SIL1 acts as a nucleotide exchange factor for BiP, the ER Hsp70 orthologue, which plays an essential role ...

متن کامل

Alteration of the unfolded protein response modifies neurodegeneration in a mouse model of Marinesco–Sjögren syndrome

Endoplasmic reticulum (ER) stress has been linked to the onset and progression of many diseases. SIL1 is an adenine nucleotide exchange factor of the essential ER lumen chaperone HSPA5/BiP that senses ER stress and is involved in protein folding. Mutations in the Sil1 gene have been associated with Marinesco-Sjögren syndrome, hallmarks of which include ataxia and cerebellar atrophy. We have pre...

متن کامل

SIL1 mutations and clinical spectrum in patients with Marinesco-Sjogren syndrome.

Marinesco-Sjögren syndrome is a rare autosomal recessive multisystem disorder featuring cerebellar ataxia, early-onset cataracts, chronic myopathy, variable intellectual disability and delayed motor development. More recently, mutations in the SIL1 gene, which encodes an endoplasmic reticulum resident co-chaperone, were identified as the main cause of Marinesco-Sjögren syndrome. Here we describ...

متن کامل

Characterization of Zebrafish Models of Marinesco-Sjögren Syndrome

SIL1 is a nucleotide exchange factor for the endoplasmic reticulum chaperone, BiP. Mutations in the SIL1 gene cause Marinesco-Sjögren syndrome (MSS), an autosomal recessive disease characterized by cerebellar ataxia, mental retardation, congenital cataracts, and myopathy. To create novel zebrafish models of MSS for therapeutic drug screening, we analyzed phenotypes in sil1 knock down fish by tw...

متن کامل

Marinesco-Sjögren Syndrome in an Emirati Child with a Novel Mutation in SIL1 Affecting the 5′ Untranslated Region

OBJECTIVE The aim of this study was to report clinical and molecular findings in an Emirati child with Marinesco-Sjögren syndrome born to consanguineous parents. CLINICAL PRESENTATION AND INTERVENTION The child presented with developmental delay, ataxia, bilateral cataracts, and dysmorphic craniofacial features, along with cerebellar atrophy. Sequencing of the SIL1 gene revealed a novel homoz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014